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SUMMARY

The landau-Zener theory of reactive cross sections has been applied to diatomic

molecules dissociating from a ladder of vibrational states. The result predicts a dissociation

rate that is quite well duplicated by an Arrhenius function having a preexponential

temperature dependence of about T 1/2, at least for inert collision partners. This relation

fits experimental data reasonably well.

The theory is then used to calculate the effect of vibrational nonequilibrium on

dissociation rate. For Morse oscillators, the results are about the same as given by

Hammerling, Kivel, and Teare in their analytic approximation for harmonic oscillators,

though at very high temperature a correction for the partition function limit is included.

The empirical correction for vibration nonequilibrium proposed by Park, which is a

convenient algorithm for CFD calculations, is modified to prevent a drastic underestimation

of dissociation rates that occurs with this method when vibrational tenzperature is much

smaller than the kinetic temperature of the gas.
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INTRODUCTION

Rate coefficients have been measured experimentally over a limited range of

temperature for most of the reactions that occur in high temperature air flow about

hypersonic vehicles. These measurements are typically fit to an Arrhenius expression for

the rate coefficient assuming that the activation energy is the heat of reaction and then

empirically fitting a preexponential term with the size and temperature dependence which

best fits the data. These expressions reproduce the data satisfactorily over the range of

experiment; the question is whether they extrapolate correctly far outside this range.
Rates for collision-induced "vibrational excitation, dissociation, atom exchange, and

ionization have been measured in shock tubes at temperatures from a few thousand to about

ten thousand degrees K. These data now need to be extrapolated to temperatures about

40,000°K to apply to the new generation of space vehicles which are designed to decelerate

at much higher velocity and at much higher altitude in the atmosphere, where flow

conditions can be far out of equilibrium. Experimental confirmation at these temperatures

and over a range of nonequilibrium conditions is unlikely. Thus in order to extrapolate

reaction rates with more confidence, a theoretical framework is needed to evaluate the

proper activation energy and the temperature dependence of the preexponential factors in

the Arrhenius expressions. The heat of reaction establishes a minimum value for the

activation energy, but an additional barrier to the rate process is possible if the transition

occurs at a potential crossing that lies above the energy of the products of reaction. In

addition, the effects of nonequilibrium need to be assessed, particularly the effects of
nonequilibrium between the vibrational and kinetic modes.

The present paper will focus on the collision induced dissociation of diatomic

molecules such as 02, N2, and NO. Collision cross section theory will be used which

incorporates a realistic functional form for the reaction cross sections, and the total rate
coefficient for dissociation will be the sum of rates from all vibrational levels. This

procedure will be shown to fit experimental measurements reasonably well with a minimum

of empiricism. Then the correction to the dissociation rate for vibrational nonequilibrium

will be assessed. The results will be extended to 40,000°K and compared with the

extrapolation of single-term Arrhenius functions which empirically fit lower temperature
data.

DISSOCIATION RATE EXPERIMENTS AND ARRHENIUS FUNCTIONS

The Arrhenius function normally used to fit the exothermic rate coefficient of a

reaction to experimental data is
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kFCr-"exp(-E*/kTO Eq. (1)

where C is a constant, T is the temperature, n is a constant coefficient which gives the

temperature dependence of the preexponential term, and E* is the activation energy. The

data can define the activation energy reasonably well, if the scatter is not severe, but do not

determine the exponent n very precisely. For example, the dissociation of 0 2 by collisions

with Ar has been measured by Camac and Vaughan 1, with perhaps greater accuracy than

any other high temperature dissociation process, over a temperature range from about 3500 °

to 8000°K. Their data is shown on Fig. 1 along with three different Arrhenius functions

where n = 1/2, 1, and 3/2. The activation energy shown, (E*/k) = 59400°K, allows for a

very slight barrier above the dissociation energy from the ground vibrational level (Do/k)

= 58970°K. This value of E*, was used by Camac and Vaughan to fit their data, and is the

value recommended by Bortner 2, along with n = 1. The Arrhenius equation with C = 3.61

x 10 TM cc/mol sec and n = 1 has probably been more widely used in CFD calculations of

flow containing dissociating 02 than any other, and is suggested as a probable rate

coefficient by Blottner 3 and by Gupta, Yos, Thompson, and Lee 4 for all collision partners,

N2, O2, NO, N, and O as well as Ar. The value of the constant C = 3.74 x 10 TMcc/mol-sec

shown on Fig. 1 is the least mean squares value when n = 1 which was obtained here, but

this small difference is probably due merely to slight differences in reading data points from

the graph published by Camac and Vaughan.

The slope of the data is so strongly determined by the exponential factor that it

matters very little which value of n is chosen to represent the preexponential temperature

variation. The slope of the Arrhenius function depends on n only at very high temperatures

where kT is the order of E* and the exponential factor approaches unity. When (E*/k) =

59400°K, the coefficient n = 1 gives the best least mean squares fit to the data with a

standard deviation in ln(kf) equal +__.22. However when n = .5 the standard deviation is

only increased to __+.24, and when n = 1.5 the standard deviation is only increased to - .23.

This near equality of the standard deviation can more or less be appreciated by eye as one

views the fit of the three functions to the data on Fig. (1).

Although one can judge that the activation energy will be very close to the

dissociation energy from the slope of the data, E* cannot be evaluated precisely. An

increase in E* will increase the slope and would push the best least mean squares fit of the

data toward the n = 3/2 function; a decrease in E* will similarly push the best fit toward

n = 1/2.

The lack of precision in fitting an Arrhenius function to data becomes much more

severe for dissociation reactions such as those resulting from N2+ N 2, 02+ 02, and NO+ NO

collisions, where much greater scatter in data is found. Because of these uncertainties, a

theoretical model which would reduce the empiricism in fitting an Arrhenius function to
data would be useful.
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RATE COEFFICIENT THEORY

The rate coefficient kf for a reaction suchas

02+M-.O+O+M Eq. (2)

gives the number of reactions R per unit volume

R - kynnl Eq. (3)

where n is the density of the reacting specie and n' is the density of the collision partner.

The rate coefficient is rigorously the cross section S for the reaction averaged over the

distribution of collision energies in center of mass coordinates. Generally this distribution

becomes Maxwell-Boltzmann like so very quickly, requiring only a few collisions per

molecule, that an accurate expression for kf is

S

Eq. (4)

where fi is the mean collision velocity in center of mass coordinates, s is the symmetry

number (unity if the colliding species are dissimilar, two if they are the same), x is the

dimensionless collision energy in units of kT (x = E/kT), and S(x) is the reactive cross

section expressed as a function of x.

Very little data exists for reactive cross sections near threshold, but the general form
of the function is known. For an endothermic reaction like dissociation, the cross section

vanishes below a threshold energy E* which is equal to or greater than the heat of reaction.

The cross section then increases rapidly as collision energy increases beyond E*, tops out

at some fraction of the total scattering cross section (which is the order of 10 15 cm 2 for most

light diatomic molecules), and eventually decreases again as collision energy increases

furtherS, 6

S-O X<X*

S-S(x-x*) x'<x

Eq. (5)

thus

fff S(x-x*)xe*dx-  °e-"f'[ffol(X*+y)eray Eq.(6)k:--; s .o

where x* is the activation energy in units of kT.

Eq. (6) has the usual Arrhenius form which depends on the exp (-x*). This factor

is a consequence of the Maxwell-Boltzmann distribution of collision energies and must be

present no matter what nonequilibrium exists in energy modes other than kinetic. The

preexponential factor varies as the mean velocity Q and the integral, which is a function only
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of x*. This integral takesa rather different temperature dependenceat the limits. At very
low andvery high temperatures(x* > > 1and x* < < 1 respectively),the rate coefficients take
the forms

°o[s ' le Eq 6b," yelimx " ° kl s

To proceed further, the form of the cross section S must be estimated. At low

temperatures relative to E*/k, the important part of the cross section is just above

threshold. The higher energy end of the cross section function is relatively unimportant

because the contribution there is nullified by the Maxwell Boltzmann distribution. However

at high temperature relative to E*/k, the shape of the cross section at the peak and

eventually at the tail becomes important.

According to the Landau-Zener quantum treatment of transition probability s'6,
transitions occur within a narrow interval of internuclear distance around a constant value

ro where the potential functions for the reactive and reactant species either cross one

another or come very close. The collision system crosses this critical reaction surface twice

when the kinetic energy associated with the velocity between the centers of mass exceeds

the intermolecular potential at the distance ro; once during the approach to collision and

again when the partners recede from one another. Thus the total probability that the system

ultimately follows the reactant potential surface after the collision event is

e - p(1 -p) + (1 -p)p - 2p(1 -p) Eq. (7)

where p is the probability of transition during a single crossing of the reaction surface. In

other words, p(1-p) is the probability that transition occurs during the approach state and

does not occur during the escape, while (1-p)p is the probability that transition does not

occurring in approach but instead occurs during the escape. Similarly p2+(l_p)2 is the

probability that collision does not result in reaction, even if energetic enough to cross the
reaction surface.

Landau and Zener find that the transition probability during a single crossing of the

reaction zone can be approximated

p -- 1-exp -2'g H12[ d_ (H22-H,I) Eq.(8)



where H_jis the matrix element representingthe averageof the total Hamiltonian operator
when the system'swave functions _ are in state i andj respectively

Hij - ( dp; It d_i ) Eq. (9)

The velocity of the system crossing the reaction zone is u, and d(H22-Hll)/dx is the

difference in slope between the product and reactant potential functions at that point.

Generally the matrix elements and the potential surfaces are not available, but the

probability p is obviously a strong function of the crossing velocity u; unity at u = 0 when the

collision is barely energetic enough to reach the reaction configuration and vanishing at

large u where the collision velocity is so high that transition does not have time to occur and

the system remains on the same potential surface throughout the collision.

The Landau-Zener model is based on a number of approximations which comprise

its precision, but it does serve to suggest the kind of shape reaction cross sections should
have. See Hansen 7 for a discussion of the limitations and usefulness of the model.

Whatever the exact shape, the total reaction probability P vanishes at either extreme, either

very low or very high relative velocity, and becomes a maximum of 1/2 at whatever the

velocity which produces a single crossing transition p of 1/2.

REACTION CROSS SECTION SHAPE

If the collision potential is spherically symmetric, conservation of angular momentum

requires that of the collisions that initially have a miss distance equal to ro, the radius of the

reaction surface, only a fraction (1-E*/E) will reach ro or closer. See Hansen 7 for the proof

of this relation. Thus the reactive cross section can be expressed

S

So

- 2p(1-p) (1-E*/E) Eq. (10)

where So is 7fro2. The rate of increase in p above threshold is generally not known since so

few reactive cross sections have been measured there; we assume that p increase as some

power m of the excess collision energy

p(1-p) = 1- 1- l--z- , E>E*
Eq. (11)

We expect that the experimental m will be somewhere in the range near unity; at least this

is the case for the ionization reactions measured by Utterback and Van Zyl s'9. Although

we cannot be sure that the nonionizing dissociation reactions will be that similar, the

Landau-Zener model suggests that the probability should increase rapidly as collision energy

exceeds E* and it would be surprising to find a slower increase than when m equals 2. The

faster increase near threshold as m approaches unity seems more realistic.

The total cross section can be expressed in terms of the dimensionless energies x*



E*/kT and x = E/kt

/ / )-}S x*

-_o = 1 - 1- 1--_--

Eq. (12)

and the rate coefficient is then

(y+x')m-y
m

- 2ffS°e-X" fo _ y m _ _ e l _

(y+x') 2m
--X *

- ffSoF,,,(x*)e

Eq. (13)

The preexponential factor Fm(x* ) is twice the integral expressed in Eq. (13). In the

limits of very low and very high temperatures, where x* > > 1 and x* < < 1 respectively

lim. F,.(x') - 2(m+ 1)! 2(m+ 1)! Eq. (14a)

(x')"

Eq. (14b)

Thus we can see that the preexponential factor in the Arrhenius equation should be

a changing function of temperature, and not a constant function as usually assumed. The

factor becomes small at very low and very high temperatures with a maximum in between.

These integrals have been evaluated by numerical quadrature for m = 1, 3/2, and 2; the

results are shown in Fig (2). F m peaks at about .42 near x* = 1 for all three values of m

and has a slightly skewed Gaussian-like shape about this peak.

At temperatures low compared with D/k, these results do not agree very well with

the observed rate coefficients. For example the preexponential factor which fits the O z +

Ar dissociation rate data varied about as T -1, whereas the low temperature limit given by

Eq. (14a) suggests that the preexponential factor should vary as fi(kT/D) m or as T (re+l/2).

The explanation for this discrepancy is that very few dissociations occur from the ground

vibrational state of the molecule; most dissociations occur from states that are about kT

from the dissociation limit where the factor F(x*) is the order of one-half and less

dependent on temperature. It is not correct to compare the expression for dissociation from

the ground state to the experimental rate where the dissociation from higher excited states

are primarily measured.

Interestingly, the simplest possible model for reaction, the available energy theory

proposed long ago by Fowler and Guggenheim m, fits the experimental data in a reasonable



way. The problem with the available energy theory is that the number of internal degrees
of freedom of the collision partners which contribute to the reaction is unknown, so this

parameter is adjusted empirically to agree with data. However Hansen 7 suggests that this

number be chosen as the number of degrees of freedom which disappear in the reaction,

which for the dissociation of a diatomic molecule is 4. Then the preexponential term in the

Arrhenius equation derived varies as T 1, just as the best fit to Camac and Vaughan's OE +

Ar dissociation data. Although the N2+ N 2 dissociation is generally taken 4 to vary as T -I/2

in the preexponential factor while the NO + NO dissociation preexponential term varies as
T -3/2, these discrepancies are not serious in view of the insensitivity of the slope of the data

to the temperature variation of the preexponential term. As we observed in the discussion

of the 0 2 + Ar dissociation data, a change in the temperature exponent n in Eq. (1) can be

compensated by changing the constant C, and any mismatch in slope of the data can be

corrected by changing the effective activation energy E*. The point is that, at least over the

range of experimental data, the Arrhenius preexponential term should vary inversely as

some power of temperature, not as a direct power of temperature as given by Eq. (14a).

The simple available energy theory arrives at a reasonable temperature dependence for the
reaction by taking into account the contribution from the excited states, whereas the reactive

cross section expression of Eq. (13) assumes that all the reactions occur from a single state

where the activation energy is constant. The reactive cross section theory will only give a
correct answer when the multiplicity of excited states is taken into account as will be shown
next.

EFFECTS OF EXCITED STATES ON REACTION

When a ladder of excited states is present which provides multiple paths to the

product state, the total rate of reaction can be expressed

= -- nn: = k/nn / Eq. (3a)
• /I

where the sum extends over all populated states i, ni is the density of reactive particles in

state i, n is the total density of reactive particles, and n' is the total density of collision

partners as before. The single sum over excited states of the reactive partner of Eq. (3)
applies strictly only when the collision partner is inert and does not change its internal

energy during collision. For inert partners the effective total rate coefficient kf is

k/ . E k/,n, 1-g- Eq. (15)



where T,, is a temperature which describes the distribution of reactive molecules over the

excited states i. Q(T,,) is the partition function for the reactive species and ei is the energy

of the ith state. At equilibrium, which we consider first, T,, equals the kinetic gas

temperature T, of course.
Now we assume that all excited states have the same form for the reactive cross

section given by Eq. (13). This is not certain, of course; the different states may have

different matrix elements and different slopes of their potential surfaces at the reaction

point in Eq. (8) and could presumably lead to somewhat different forms for the transition

probabilities given by Eq. (11). However in the absence of better knowledge we proceed

to use the assumption of equivalent forms

where

ffSi F(x_) e -(e'-_')lkTk:, s
Eq. (16)

x; - ( E*-ei)/kT

The total rate coefficient then becomes

(s) lx:l ,17,
Certainly the exponential factor in Eq. (16) is correct, if E* does not change with the state

i, and as observed in Fig. (2) the factor F(xi* ) is not highly dependent on the parameter
chosen for m.

The simplification will now be made that the dissociation rate depends primarily on

the vibrational state of the molecule and not on its rotational state. This is not strictly so,

though it has often been assumed in dissociation rate studies. Typically the rotational states

are completely in equilibrium with the kinetic temperature and the characteristic rotational

temperature B/k is orders of magnitude smaller than T. If we assume that the rotational

partition function is separable from the vibrational, this factor of Q largely cancels the

similar factors in the sum over states in Eq. (17). The remaining degeneracies of the

vibrational states are all unity. We also take the ratios (Si/So) in Eq. (17) to be unity; this

also is not strictly so as we expect cross sections for higher vibrational states probably

increase, but the increase should be small for stiff molecules like 0 2 and N 2 until very close

to the dissociation limit when the factors F(xi* ) cancel the importance of these terms

anyway. For dissociation, the activation energy E* is taken as the dissociation energy D.

Then the simplified expression for the total rate coefficient is

ffS°e-°/ r F(x:) F_.q.(18)
k:- ,
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where the summation now extendsonly over the vibrational levelsand Qv is the vibrational
partition function.

The summations of F(xi* ) and the partition function Qv have been determined

numerically for a Morse oscillator series of energy levels where the energy above the ground
state is

e, = i- i(i+1) Eq. (19)

for N z, 0 2 and NO. The summation of F(x_*) is remarkably independent of temperature

since it essentially sums only levels where x_* = (D-ei)/kT is close to unity. Thus the

preexponential term of the rate coefficient in Eq. (18) varies about as 0/Q,,. For harmonic

oscillators Q,, varies about as T and a little bit faster than this for the Morse oscillator, so

the total variation in the preexponential is roughly Y "1/2.

ENDOTHERMIC RATES WITH VANISHING REVERSE REACTION

Rates of reaction are never observed under equilibrium conditions when forward and

reverse reactions are unbalanced, only when they are out of balance. In a shock tube the

rate of reaction is measured at the inception of reaction caused by a sudden discontinuity

of kinetic temperature when the gas is heated by a passing shock wave. Under these
conditions the reverse exothermic reaction is absent because the concentration of reactants

is zero, and this is the situation that should be analyzed when comparing a theoretical model

with experimental data.

Under these highly nonequilibrium conditions, the population of excited states is

depleted in the upper levels. The reaction proceeds from a pseudo-steady distributions that

is like a truncated Boltzmann distribution as shown by solutions to the Master Equations

which allow for shuffling between all the excited levels as well as for reaction. Hansen 7

shows that as a first approximation a Boltzmann distribution of vibrational states truncated

about kT below the dissociation limit, or perhaps a bit more, will duplicate the rate of

dissociation that is predicted to occur from a pseudo steady distribution according to

solutions of the Master Equations, even considering a rather wide variation in reactive cross

sections. Park n has suggested that more realistic distributions of vibrational states should

be bi-model. The lower and upper vibrational levels do not exchange vibrational quanta

easily because of anharmonicity; thus lower levels can be in a Boitzmann distribution at a

temperature T,, that is far out of equilibrium with the kinetic temperature T, while upper

levels tend toward a Boltzmann distribution described by the temperature T, because the

vibrational states then become so closely spaced they act more like a classical continuum

which the high energy collisions shuffle back and forth more easily. However that may be,

for the conditions of interest here the problem is somewhat moot since the upper states are

missing due to their rapid escape to the dissociated state. To model the typical

experimental condition, the summation over all F(x_*) and of terms in the vibrational

partition function Q,, in Eq. (18) is truncated kT below the dissociation limit. This

truncation of states introduces an extra temperature dependence at high temperature that
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reduces both the sum of F(xi* ) and of Q,,, though these reductions compensate to a large
extent.

Figure 3 shows the comparison between the predictions of Eq. (8) and the best single

term Arrhenius functions which have been recommended 4 to represent experimental data.

Fig (3a) shows the O2-Ar dissociation rate coefficient from Eq. (18) (solid curve) and for

Blottner's Arrhenius equation (dashed curve) along with Camac and Vaughan's data

mentioned previously. Blottner's formula agrees with the O2-Ar data and has been

recommended without modification for all collision partners including N 2, 0 2, NO, N, and

O as well as Ar. The slope of the function given by Eq. (18) has been made as small as

possible by reducing the effective activation energy as far as possible to the value of D O =

5.117eV. However this reduction in the slope is only about 1% which is relatively
meaningless. The present theory is slightly more in accord with a T 1/2 preexponential

dependence than the T "1 dependence given by Blottner's equation; however again this

difference is rather insignificant in view of the scatter in data, excellent data though it is.

The first appreciable difference between the two appears at high temperatures near 40000°K

where the present calculations suggest a greater rate coefficient might occur by a factor of

about 2.5. Again this difference has questionable significance in view of all the

approximations involved, and for practical purposes the use of Blottner's equation seems

quite justified.

Fig (3b) shows the comparison between the present calculations for N_N
dissociation and Blottner's Arrhenius equation. In this case Blottner decided that ,,.

preexponential dependence best described the data and the agreement between the two is

almost perfect. However the data for N2-N 2 dissociation shows considerable scatter, even

on the logarithmic Arrhenius plot, so the assignment of this temperature dependence is far
from certain.

Fig. (3c) shows the same comparison between the present calculations and Blottner's
recommended equation for NO-NO collision dissociation. In this case a T 3/2 dependence

has been assigned to the preexponential term of the Arrhenius equation, and the fit between

the two suffers accordingly, although the worst discrepancy occurring at 40,000°K is only a

factor of 5. The NO-NO dissociation data is even more widely scattered than the previous

cases, so the temperature dependence assigned by Blottner is not necessarily precise.

However it represents the best estimate of an Arrhenius function based on available data.

DISSOCIATION WITH RECOMBINATION

As dissociation proceeds in the gas and the free atom concentration builds up, the

recombination reaction subtracts from the observed forward rate. Usually this is treated by

calculating separately the reverse reaction using the recombination rate coefficient k_, which

is related to k r by the equilibrium constant I_(T)

kf _ e-D[kT

-ff - K..cr) - W.
Eq. (20)
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where Qaand Qm are the total partition functions of the atoms and molecules respectively.
However, if the process is modelled reasonably well by the pseudo-steady distributions

obtained in solution of the Master Equations, we can simply subtract the fraction of
dissociation events which are in balance with the atom concentration. The fraction of the

total number of reactive molecules which is in pseudo equilibrium with the atom

concentration a is (a/a*), where a* is the atom concentration which would be in equilibrium

with the total molecule density n.

(a*) 2 - n Keq(T) Eq. (21)

then the effective forward rate coefficient which gives the net rate of dissociation is

[ lal21 Soe "Tk/(net) = 1- _ SQv _ F(x:)
Eq. (22)

Because the correction involves the square of the product concentration in the case of

dissociation, the observed forward rate is quite insensitive to the back reaction until rather

close to full equilibrium. When free atom concentrations are 30% of their equilibrium
value, the observed dissociation rate has only decreased about 10%.

DISSOCIATION WITH VIBRATIONAL NONEQUILIBRIUM

When the vibrational temperature TV has not relaxed to equilibrium with the

translational temperature T, the population distribution in the lower states is assumed to be
Boltzmann

-e_/kr,
ni e Eq. (23)-- I

n Qv(Tv)

then the dissociation rate coefficient of Eq. (18) becomes

k_

USo _ e _ kr/e-e,/kr,

s , Q,,(T,,)

ff Soe -O /kr
i e

sQ_(T_)

-EtI kT*

Eq. (24)
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where the temperature T* is

1 1 1
- Eq. (25)

T" Tv T

This is the same effective temperature proposed by Hammerling, Kivel, and Teare 12 for

their vibrational non-equilibrium correction factor, which was based on a harmonic oscillator

model.

The ratio of the dissociation rate coefficient for non equilibrium, Iq,(T,T,,), to the

coefficient for full equilibrium, kf(T,T) is according to Eq. (24)

ki(r,L) Or(r) Ei Fi(x;)e-n'/rr

k/(T,T) Ov(Tv) E Fi(x;)

Eq. (26)

Fig. (4) shows the ratio kf(T,T,,)/kf(T,T) based on the Morse oscillator ladder of

vibrational states for Tv/T equal 0.9, 0.6, and 0.1; all for the limiting case where atom

concentration is zero and there is no recombination reaction. Curves are shown for 02

dissociation and for N 2 dissociation. The correction is somewhat larger for N 2 principally

because the characteristic vibrational temperature mo/k is much larger.

As gas temperature increases, the dissociation occurs more readily from lower levels

on the vibrational ladder. Then the vibrational nonequilibrium becomes a less important

factor in determining the dissociation rate and the rate coefficients approach the equilibrium

value more closely as shown in Fig. (4).

The principle feature of importance is that vibrational temperature of the oscillators

does not enter the exponential factor of the Arrhenius function; Tv can at most influence

the summation effect of dissociation from the excited states and thus modify the

preexponential term of the Arrhenius function. Thus any scheme which weights the

temperature in the exponential factor with the vibrational temperature, as proposed by

Park n, is theoretically incorrect in principle, though it may provide an approximate

correction in an empirical way if the vibrational temperature is not depressed too far. Park

proposed an effective temperature T a for use in the Arrhenius expressions which are fitted

to experimental data

Ta . T(, 3 T.7 Eq. (27)

In this case, for the Arrhenius function defined in Eq. (1), the correction factor for

vibrational nonequilibrium becomes
7" .3 1

kf(T,T)kf(T,T) [T)s'-_v e -D/kr[(rv) ] Eq. (28)
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The problem with this correction is that if it is pushed far enough, to very low T,,, it will
greatly underestimate the true dissociation rate because of the extreme sensitivity of the

exponential term in Eq. (1) to the temperature used, which as we have shown theoretically

should be the kinetic gas temperature without modification. This factor appears because

the Boltzmann distribution of kinetic states is truncated at the dissociation energy, without

regard to the internal states of the collision partners.

Hammerling, Kivel, and Teare 12, using a harmonic oscillator approximation, derive

a correction factor for dissociation rates when vibrational nonequilibrium is present

kf(T_,T) 1 1-e -_re/r" 1-e -O/L
ms

kf(T,T) N l_e-alr" 1-e-at r

Eq. (29)

where o = r_/k, the characteristic vibrational temperature, and N is the total number of
vibrational levels considered.

As a first approximation a slightly modified form of Eq. (29) can be derived from Eq.
(26). The sum of Fi(xi') is found to be rather constant, more or less independent of

temperature. Thus the Gaussian-like function of Fig. (2) can be approximated by a square
function having the maximum value about fo and a width truncated at a specified number

of vibrational levels N. Since the vibrational levels are approximately equally spaced about

this maximum, even for a realistic model like the Morse oscillator, with vibrational levels
spaced ha,* = k0*

P,(x;). , fo Eq. (30a)

Fi(x;) e-'O'lr" " fo
1 -e -NO'IT*

1-e - e'/r*

Eq. (30b)

Also, since we may wish to treat very high temperatures where kT is the order of the

dissociation energy D, the cutoff in the vibrational partition function becomes more
important. Then

1 -e -DIkT

Qv(T)., Eq. (31a)
1-e-e/kr

l -e -DlkTv

qv(Tv) -, 1-e -_kr" Eq. (31b)
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and the approximation for Eq. (26) becomes

k,,(T,T) " N 1-e-°'/r" 1-_ _) 1-e-°/kr"

r, 7">> g N 1-e-O'/r" 1-e-_/kr"

Eq.(26a)

This has the same form as the correction given by Hammerling et al a2, except that the
number of levels N is adjusted to a partial number of vibrational levels, 0* is no_*/k with

_* the average frequency spacing between vibrational states at the level i where E i is about

kT, and the last factor in Eq. (26a) has been added to account for the finite limit in the

vibrational partition function sum. One could also consider changing the characteristic

temperature 0 to an average value between the ground vibrational states and states where

E_ is about kT, to account for anharmonicity in the molecule, but as T v and T both become
large compared with 0 the ratio of partition functions approaches (T,,/T) without regard to

the value of 0 anyway.
Fig. (5) shows comparisons between the correction factors for vibrational

nonequilibrium given by Eq. (26), Eq. (28), and Eq. (26a). For the latter, the number of
levels N is chosen to be 34 for both 0 2 and N 2 dissociation. As expected, there is

reasonable equality between Eq. (26) and the approximation of Eq. (26a) derived from that

expression. When Tv/T is about ½ or greater, the empirical correction of Eq. (28) is not
too bad; however as Tv becomes very small compared with T, this correction becomes very

small due to the sensitivity of the modified exponential term in the Arrhenius rate

coefficient. Probably these small values are unrealistic in view of the fact that they have no

theoretical justification. Nevertheless Park's correction has the advantage of being a very

simple algorithm, and it could be a useful empirical approximation if care is taken that it

not be used for T,,/T less than about ½ or so.
Although the effective temperature method of modifying an Arrhenius dissociation

rate coefficient cannot be justified in a theoretical way, this algorithm is appealingly simple

to use and is worth salvaging for CFD computations. Accordingly, the corrections to
dissociation rate coefficient provided by the present theory were assumed valid, and the

coefficient "a" in the effective temperature T,

T a - Tva T t-a

was determined, which could be used in the Arrhenius expression

Eq. (32a)

C -Ol_r',,
k - -- e Eq. (32b)

r2
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to duplicate the results of Eq. (26).
The values of "a" obtained were somewhat scattered about a trend where "a"

increases as a function of Tv/T

a -, 0.1 + 0.4 (Tv/T) Eq. (32c)

The comparison between the results given by Eq. (26) and by Eq. (32) are shown in

Figure (6). Fig. (6a) is for the value n = 1/2, which has been used to duplicate experimental

data for the dissociation rate of N2; Fig. (6b) is for the value n = 1, which has been used

to duplicate experimental data for the dissociation rate of O z. The relation of Eq. (32c)

provides a fair duplication of both cases over the range of Tv/T from 1 to 0.1.

As noted previously, the value a = .3 suggested by Park n is not a bad choice

provided Tv/T is not too small. However, when vibrations are almost unexcited, as they are
behind a shock wave moving into cold air, a smaller value of a is needed to avoid an

excessive depression of the rate coefficient given by Eq. (32b). Clearly this occurs because

of the sensitivity of the exponential term to any change in the effective temperature used,

a change which increases as the vibrational temperature is weighted more strongly in Eq.

(32a).

CONCLUDING REMARKS

An attempt has been made to apply collision cross section theory in a somewhat

rigorous way, summing the rate of collision induced dissociation of diatomic molecules from

each vibrational level, to obtain the total rate coefficient which is observed in experiment.

The summed rate coefficient agrees quite well with the Arrhenius expressions which have

been fit to data. The results explain the discrepancy that existed in the temperature

dependence of the preexponential term of the Arrhenius equation when collision cross

section theory was applied just to dissociation from the ground vibrational state; the effect

of excited states on the rate process is an essential factor to obtaining the correct result.

The theory suggests that the forward rate coefficient for dissociation should be given

by an Arrhenius function where the preexponential factor varies about as T x/2, at least for

dissociations caused by collision with an inert partner that has no internal degrees of

freedom to contribute to the process. This is indeed the variation that has been assigned

for N2-N 2 dissociation and the agreement there is very close; the agreement is not quite as

good for 02-02 where the variation T _ has been assigned to the preexponential term, and

the discrepancy becomes even greater for NO-NO collisions where the variation T 3/z has

been assigned. This is shown in Figs. (3a), (3b), and (3c). However, the discrepancies are

not very meaningful since the scatter in data is such that the mean square deviation of data
from the Arrhenius formula is about the same no matter which temperature variation factor

is chosen. Overall, the reaction cross section theory which sums the dissociation rate from

a ladder of vibrational levels gives a reasonably good fit to data. Since the theory does

assume the collision partner to be inert, some deviation from this theory might be expected

where the collision partner contains unpaired electrons that would tend to form transient

bonds with the reactive specie during the collision event. This may well be the case with

NO and atomic collision partners, for example.

The collision cross section theory does not differ significantly from the Arrhenius
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expressions assigned to fit data, even when extrapolated to high temperatures around
40,000°K. The Arrhenius expressions all fit the data as well as possible in view of the data

scatter, and they are simpler algorithms to use for extrapolation than the detailed theory.

The results from the latter primarily provide confidence that these extrapolations are

reasonable. However, the theory also provides a method of evaluating the effect of

vibrational nonequilibrium on dissociation rates. This is an important factor in the

calculation of flow about hypersonic space vehicles at high altitude. The results agree

reasonably well with the correction developed by Hammerling, Kivel, and Teare12; small

refinements for anharmonicity and truncation of the vibrational partition function become

significant only at higher temperatures. The empirical modification of the Arrhenius

function proposed by Park n to account for nonequilibrium vibration gives similar values so

long as the ratio Tv/T is about 1/2 or more. Park's correction has the merit of being a very

simple, quick algorithm to use in CFD calculations. However it should not be relied upon

when the ratio Tv/T is much smaller than 1/2, since it uses the theoretically indefensible

method of replacing the kinetic temperature, which properly belongs in the exponential

factor of the Arrhenius function, with a lower temperature that has been empirically

weighted with the vibrational temperature. Eventually at small enough T_, the effective

temperature must be weighted much more weakly with the vibrational temperature to avoid
unrealistically small values of the dissociation rate coefficient.
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